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Abstract. Knowledge graphs enable a wide variety of applications,
including question answering and information retrieval. Despite the great
effort invested in their creation and maintenance, even the largest (e.g.,
Yago, DBPedia or Wikidata) remain incomplete. We introduce Rela-
tional Graph Convolutional Networks (R-GCNs) and apply them to two
standard knowledge base completion tasks: Link prediction (recovery of
missing facts, i.e. subject-predicate-object triples) and entity classifica-
tion (recovery of missing entity attributes). R-GCNs are related to a
recent class of neural networks operating on graphs, and are developed
specifically to handle the highly multi-relational data characteristic of
realistic knowledge bases. We demonstrate the effectiveness of R-GCNs
as a stand-alone model for entity classification. We further show that fac-
torization models for link prediction such as DistMult can be significantly
improved through the use of an R-GCN encoder model to accumulate
evidence over multiple inference steps in the graph, demonstrating a large
improvement of 29.8% on FB15k-237 over a decoder-only baseline.

1 Introduction

Knowledge bases organize and store factual knowledge, enabling a multitude of
applications including question answering [1–6] and information retrieval [7–10].
Even the largest knowledge bases (e.g. DBPedia, Wikidata or Yago), despite
enormous effort invested in their maintenance, are incomplete, and the lack
of coverage harms downstream applications. Predicting missing information in
knowledge bases is the main focus of statistical relational learning (SRL).

We consider two fundamental SRL tasks: link prediction (recovery of missing
triples) and entity classification (assigning types or categorical properties to
entities). In both cases, many missing pieces of information can be expected to
reside within the graph encoded through the neighborhood structure. Following
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this intuition, we develop an encoder model for entities in the relational graph
and apply it to both tasks.

Our entity classification model uses softmax classifiers at each node in the
graph. The classifiers take node representations supplied by a relational graph
convolutional network (R-GCN) and predict the labels. The model, including
R-GCN parameters, is learned by optimizing the cross-entropy loss.

Our link prediction model can be regarded as an autoencoder consisting of
(1) an encoder: an R-GCN producing latent feature representations of entities,
and (2) a decoder: a tensor factorization model exploiting these representations
to predict labeled edges. Though in principle the decoder can rely on any type of
factorization (or generally any scoring function), we use one of the simplest and
most effective factorization methods: DistMult [11]. We observe that our method
achieves significant improvements on the challenging FB15k-237 dataset [12],
as well as competitive performance on FB15k and WN18. Among other base-
lines, our model outperforms direct optimization of the factorization (i.e. vanilla
DistMult). This result demonstrates that explicit modeling of neighborhoods in
R-GCNs is beneficial for recovering missing facts in knowledge bases.

Our main contributions are as follows: To the best of our knowledge, we are
the first to show that the GCN framework can be applied to modeling relational
data, specifically to link prediction and entity classification tasks. Secondly, we
introduce techniques for parameter sharing and to enforce sparsity constraints,
and use them to apply R-GCNs to multigraphs with large numbers of relations.
Lastly, we show that the performance of factorization models, at the example
of DistMult, can be significantly improved by enriching them with an encoder
model that performs multiple steps of information propagation in the relational
graph.

2 Neural Relational Modeling

We introduce the following notation: we denote directed and labeled multi-graphs
as G = (V, E ,R) with nodes (entities) vi ∈ V and labeled edges (relations)
(vi, r, vj) ∈ E , where r ∈ R is a relation type.1

2.1 Relational Graph Convolutional Networks

Our model is primarily motivated as an extension of GCNs that operate on local
graph neighborhoods [13,14] to large-scale relational data. These and related
methods such as graph neural networks [15] can be understood as special cases
of a simple differentiable message-passing framework [16]:

h
(l+1)
i = σ

( ∑
m∈Mi

gm(h(l)
i , h

(l)
j )

)
, (1)

1 R contains relations both in canonical direction (e.g. born in) and in inverse direction
(e.g. born in inv).
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where h
(l)
i ∈ R

d(l)
is the hidden state of node vi in the l-th layer of the neural net-

work, with d(l) being the dimensionality of this layer’s representations. Incoming
messages of the form gm(·, ·) are accumulated and passed through an element-
wise activation function σ(·), such as the ReLU(·) = max(0, ·).2 Mi denotes the
set of incoming messages for node vi and is often chosen to be identical to the set
of incoming edges. gm(·, ·) is typically chosen to be a (message-specific) neural
network-like function or simply a linear transformation gm(hi, hj) = Whj with
a weight matrix W such as in [14]. This type of transformation has been shown
to be very effective at accumulating and encoding features from local, structured
neighborhoods, and has led to significant improvements in areas such as graph
classification [13] and graph-based semi-supervised learning [14].

Motivated by these architectures, we define the following simple propagation
model for calculating the forward-pass update of an entity or node denoted by
vi in a relational (directed and labeled) multi-graph:

h
(l+1)
i = σ

⎛
⎝∑

r∈R

∑
j∈N r

i

1
ci,r

W (l)
r h

(l)
j + W

(l)
0 h

(l)
i

⎞
⎠ , (2)

where N r
i denotes the set of neighbor indices of node i under relation r ∈ R.

ci,r is a problem-specific normalization constant that can either be learned or
chosen in advance (such as ci,r = |N r

i |).
Intuitively, (2) accumulates transformed feature vectors of neighboring nodes

through a normalized sum. Choosing linear transformations of the form Whj

that only depend on the neighboring node has crucial computational benefits:
(1) we do not need to store intermediate edge-based representations which could
require a significant amount of memory, and (2) it allows us to implement Eq. 2 in
vectorized form using efficient sparse-dense O(|E|) matrix multiplications, similar
to [14]. Different from regular GCNs, we introduce relation-specific transforma-
tions, i.e. depending on the type and direction of an edge. To ensure that the
representation of a node at layer l+1 can also be informed by the corresponding
representation at layer l, we add a single self-connection of a special relation
type to each node in the data.

A neural network layer update consists of evaluating (2) in parallel for every
node in the graph. Multiple layers can be stacked to allow for dependencies across
several relational steps. We refer to this graph encoder model as a relational
graph convolutional network (R-GCN). The computation graph for a single node
update in the R-GCN model is depicted in Fig. 1.

2.2 Regularization

A central issue with applying (2) to highly multi-relational data is the rapid
growth in number of parameters with the number of relations in the graph. In
practice this can easily lead to overfitting on rare relations and to models of very
2 Note that this represents a simplification of the message passing neural network

proposed in [16] that suffices to include the aforementioned models as special cases.
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Fig. 1. Diagram for computing the update of a single graph node/entity (red) in the R-
GCN model. Activations (d-dimensional vectors) from neighboring nodes (dark blue)
are gathered and then transformed for each relation type individually (for both in-
and outgoing edges). The resulting representation (green) is accumulated in a (nor-
malized) sum and passed through an activation function (such as the ReLU). This
per-node update can be computed in parallel with shared parameters across the whole
graph. (b) Depiction of an R-GCN model for entity classification with a per-node loss
function. (c) Link prediction model with an R-GCN encoder (interspersed with fully-
connected/dense layers) and a DistMult decoder. (Color figure online)

large size. Two intuitive strategies to address such issues is to share parameters
between weight matrices, and to enforce sparsity in weight matrices so as to limit
the total number of parameters.

Corresponding to these two strategies, we introduce two separate meth-
ods for regularizing the weights of R-GCN-layers: basis- and block-diagonal -
decomposition. With the basis decomposition, each W

(l)
r is defined as follows:

W (l)
r =

B∑
b=1

a
(l)
rb V

(l)
b , (3)

i.e. as a linear combination of basis transformations V
(l)
b ∈ R

d(l+1)×d(l)
with

coefficients a
(l)
rb such that only the coefficients depend on r.

In the block-diagonal decomposition, we let each W
(l)
r be defined through

the direct sum over a set of low-dimensional matrices:

W (l)
r =

B⊕
b=1

Q
(l)
br . (4)
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Thereby, W
(l)
r are block-diagonal matrices:

diag(Q(l)
1r , . . . , Q

(l)
Br) with Q

(l)
br ∈ R

(d(l+1)/B)×(d(l)/B). (5)

Note that for B = d, each Q has dimension 1 and Wr becomes a diagonal matrix.
The block-diagonal decomposition is as such a generalization of the diagonal
sparsity constraint used in the decoder in e.g. DistMult [11].

The basis function decomposition (3) can be seen as a form of effective weight
sharing between different relation types, while the block decomposition (4) can
be seen as a sparsity constraint on the weight matrices for each relation type. The
block decomposition structure encodes an intuition that latent features can be
grouped into sets of variables which are more tightly coupled within groups than
across groups. Both decompositions reduce the number of parameters needed to
learn for highly multi-relational data (such as realistic knowledge bases).

The overall R-GCN model then takes the following form: We stack L layers as
defined in (2) – the output of the previous layer being the input to the next layer.
The input to the first layer can be chosen as a unique one-hot vector for each
node in the graph if no other features are present. For the block representation,
we map this one-hot vector to a dense representation through a single linear
transformation. While in this work we only consider the featureless approach,
we note that GCN-type models can incorporate predefined feature vectors [14].

3 Entity Classification

For (semi-)supervised classification of nodes (entities), we simply stack R-GCN
layers of the form (2), with a softmax(·) activation (per node) on the output of
the last layer. We minimize the following cross-entropy loss on all labeled nodes
(while ignoring unlabeled nodes):

L = −
∑
i∈Y

K∑
k=1

tik lnh
(L)
ik , (6)

where Y is the set of node indices that have labels and h
(L)
ik is the k-th entry of

the network output for the i-th labeled node. tik denotes its respective ground
truth label. In practice, we train the model using (full-batch) gradient descent
techniques. A schematic depiction of the model is given in Fig. 1b.

4 Link Prediction

Link prediction deals with prediction of new facts (i.e. triples (subject, relation,
object)). Formally, the knowledge base is represented by a directed, labeled graph
G = (V, E ,R). Rather than the full set of edges E , we are given only an incom-
plete subset Ê . The task is to assign scores f(s, r, o) to possible edges (s, r, o) in
order to determine how likely those edges are to belong to E .
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In order to tackle this problem, we introduce a graph auto-encoder model
(see Fig. 1c), comprised of an entity encoder and a scoring function (decoder).
The encoder maps each entity vi ∈ V to a real-valued vector ei ∈ R

d. The
decoder reconstructs edges of the graph relying on the vertex representations;
in other words, it scores (subject, relation, object)-triples through a function
s : Rd × R ×R

d → R. Most existing approaches to link prediction (for example,
tensor and neural factorization methods [11,17–20]) can be interpreted under this
framework. The crucial distinguishing characteristic of our work is the reliance
on an encoder. Whereas most previous approaches use a single, real-valued vector
ei for every vi ∈ V optimized directly in training, we compute representations
through an R-GCN encoder with ei = h

(L)
i , similar to the graph auto-encoder

model introduced in [21] for unlabeled undirected graphs.
In our experiments, we use the DistMult factorization [11] as the scoring

function, which is known to perform well on standard link prediction benchmarks
when used on its own. In DistMult, every relation r is associated with a diagonal
matrix Rr ∈ R

d×d and a triple (s, r, o) is scored as

f(s, r, o) = eTs Rreo. (7)

As in previous work on factorization [11,20], we train the model with negative
sampling. For each observed example we sample ω negative ones. We sample by
randomly corrupting either the subject or the object of each positive example.
We optimize for cross-entropy loss to push the model to score observable triples
higher than the negative ones:

L = − 1
(1 + ω)|Ê |

∑
(s,r,o,y)∈T

y log l
(
f(s, r, o)

)
+

(1 − y) log
(
1 − l

(
f(s, r, o)

))
,

(8)

where T is the total set of real and corrupted triples, l is the logistic sigmoid
function, and y is an indicator set to y = 1 for positive triples and y = 0 for
negative ones.

5 Empirical Evaluation

5.1 Entity Classification Experiments

Here, we consider the task of classifying entities in a knowledge base. In order to
infer, for example, the type of an entity (e.g. person or company), a successful
model needs to reason about the relations with other entities that this entity is
involved in.

Datasets. We evaluate our model on four datasets3 in Resource Description
Framework (RDF) format [22]: AIFB, MUTAG, BGS, and AM. Relations in
3 http://dws.informatik.uni-mannheim.de/en/research/a-collection-of-benchmark-

datasets-for-ml.

http://dws.informatik.uni-mannheim.de/en/research/a-collection-of-benchmark-datasets-for-ml
http://dws.informatik.uni-mannheim.de/en/research/a-collection-of-benchmark-datasets-for-ml
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these datasets need not necessarily encode directed subject-object relations, but
are also used to encode the presence, or absence, of a specific feature for a given
entity. In each dataset, the targets to be classified are properties of a group of
entities represented as nodes. The exact statistics of the datasets can be found
in Table 1. For a more detailed description of the datasets the reader is referred
to [22]. We remove relations that were used to create entity labels: employs and
affiliation for AIFB, isMutagenic for MUTAG, hasLithogenesis for BGS, and
objectCategory and material for AM.

For the entity classification benchmarks described in our paper, the evalua-
tion process differs subtly between publications. To eliminate these differences,
we repeated the baselines in a uniform manner, using the canonical test/train
split from [22]. We performed hyperparameter optimization on only the training
set, running a single evaluation on the test set after hyperparameters were chosen
for each baseline. This explains why the numbers we report differ slightly from
those in the original publications (where cross-validation accuracy was reported).

Table 1. Number of entities, relations, edges and classes along with the number of
labeled entities for each of the datasets. Labeled denotes the subset of entities that
have labels and that are to be classified.

Dataset AIFB MUTAG BGS AM

Entities 8,285 23,644 333,845 1,666,764

Relations 45 23 103 133

Edges 29,043 74,227 916,199 5,988,321

Labeled 176 340 146 1,000

Classes 4 2 2 11

Baselines. As a baseline for our experiments, we compare against recent
state-of-the-art classification results from RDF2Vec embeddings [23], Weisfeiler-
Lehman kernels (WL) [24,25], and hand-designed feature extractors (Feat) [26].
Feat assembles a feature vector from the in- and out-degree (per relation) of
every labeled entity. RDF2Vec extracts walks on labeled graphs which are then
processed using the Skipgram [27] model to generate entity embeddings, used
for subsequent classification. See [23] for an in-depth description and discussion
of these baseline approaches. All entity classification experiments were run on
CPU nodes with 64 GB of memory.

For WL, we use the tree variant of the Weisfeiler-Lehman subtree kernel
from the Mustard library.4 For RDF2Vec, we use an implementation provided
by the authors of [23] which builds on Mustard. In both cases, we extract explicit
feature vectors for the instance nodes, which are classified by a linear SVM. For

4 https://github.com/Data2Semantics/mustard.

https://github.com/Data2Semantics/mustard
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the MUTAG task, our preprocessing differs from that used in [23,25] where for
a given target relation (s, r, o) all triples connecting s to o are removed. Since o
is a boolean value in the MUTAG data, one can infer the label after processing
from other boolean relations that are still present. This issue is now mentioned
in the Mustard documentation. In our preprocessing, we remove only the specific
triples encoding the target relation.

Results. All results in Table 2 are reported on the train/test benchmark splits
from [22]. We further set aside 20% of the training set as a validation set for
hyperparameter tuning. For R-GCN, we report performance of a 2-layer model
with 16 hidden units (10 for AM), basis function decomposition (Eq. 3), and
trained with Adam [28] for 50 epochs using a learning rate of 0.01. The normal-
ization constant is chosen as ci,r = |N r

i |.
Hyperparameters for baselines are chosen according to the best model per-

formance in [23], i.e. WL: 2 (tree depth), 3 (number of iterations); RDF2Vec: 2
(WL tree depth), 4 (WL iterations), 500 (embedding size), 5 (window size), 10
(SkipGram iterations), 25 (number of negative samples). We optimize the SVM
regularization constant C ∈ {0.001, 0.01, 0.1, 1, 10, 100, 1000} based on perfor-
mance on a 80/20 train/validation split (of the original training set).

For R-GCN, we choose an l2 penalty on first layer weights Cl2 ∈ {0, 5 ·10−4}
and the number of basis functions B ∈ {0, 10, 20, 30, 40} based on validation set
performance, where B = 0 refers to no basis decomposition. Block decomposition
did not improve results. Otherwise, hyperparameters are chosen as follows: 50
(number of epochs), 16 (number of hidden units), and ci,r = |N r

i | (normalization
constant). We do not use dropout. For AM, we use a reduced number of 10
hidden units for R-GCN to reduce the memory footprint. All entity classification
experiments were run on CPU nodes with 64 GB of memory.

Table 2. Entity classification results in accuracy (average and standard error over 10
runs) for a feature-based baseline (see main text for details), WL [24,25], RDF2Vec
[23], and R-GCN (this work). Test performance is reported on the train/test set splits
provided by [22].

Model AIFB MUTAG BGS AM

Feat 55.55 ± 0.00 77.94 ± 0.00 72.41 ± 0.00 66.66 ± 0.00

WL 80.55 ± 0.00 80.88 ± 0.00 86.20 ± 0.00 87.37 ± 0.00

RDF2Vec 88.88 ± 0.00 67.20 ± 1.24 87.24 ± 0.89 88.33 ± 0.61

R-GCN (Ours) 95.83 ± 0.62 73.23 ± 0.48 83.10 ± 0.80 89.29 ± 0.35

Our model achieves state-of-the-art results on AIFB and AM. To explain
the gap in performance on MUTAG and BGS it is important to understand the
nature of these datasets. MUTAG is a dataset of molecular graphs, which was
later converted to RDF format, where relations either indicate atomic bonds or
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merely the presence of a certain feature. BGS is a dataset of rock types with
hierarchical feature descriptions which was similarly converted to RDF format,
where relations encode the presence of a certain feature or feature hierarchy.
Labeled entities in MUTAG and BGS are only connected via high-degree hub
nodes that encode a certain feature.

We conjecture that the fixed choice of normalization constant for the aggre-
gation of messages from neighboring nodes is partly to blame for this behavior,
which can be particularly problematic for nodes of high degree. A potentially
promising way to overcome this limitation in future work is to introduce an
attention mechanism, i.e. to replace the normalization constant 1/ci,r with data-
dependent attention weights aij,r, where

∑
j,r aij,r = 1.

5.2 Link Prediction Experiments

As shown in the previous section, R-GCNs serve as an effective encoder for
relational data. We now combine our encoder model with a scoring function
(which we refer to as a decoder, see Fig. 1c) to score candidate triples for link
prediction in knowledge bases.

Datasets. Link prediction algorithms are commonly evaluated on FB15k, a sub-
set of the relational database Freebase, and WN18, a subset of WordNet. In [12],
a serious flaw was observed in both datasets: The presence of inverse triplet pairs
t = (e1, r, e2) and t′ = (e2, r−1, e1) with t in the training set and t′ in the test
set. This reduces a large part of the prediction task to memorization of affected
triplet pairs, and a simple baseline LinkFeat employing a linear classifier and fea-
tures of observed training relations was shown to outperform existing systems
by a large margin. Toutanova and Chen proposed a reduced dataset FB15k-237
with all such inverse triplet pairs removed. We therefore choose FB15k-237 as
our primary evaluation dataset. Since FB15k and WN18 are still widely used, we
also include results on these datasets using the splits introduced in [29] (Table 3).

Table 3. Number of entities and relation types along with the number of edges per
split for the three datasets.

Dataset WN18 FB15K FB15k-237

Entities 40,943 14,951 14,541

Relations 18 1,345 237

Train edges 141,442 483,142 272,115

Val. edges 5,000 50,000 17,535

Test edges 5,000 59,071 20,466
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Baselines. A common baseline for both experiments is direct optimization of
DistMult [11]. This factorization strategy is known to perform well on standard
datasets, and furthermore corresponds to a version of our model with fixed entity
embeddings in place of the R-GCN encoder as described in Sect. 4. As a second
baseline, we add the simple neighbor-based LinkFeat algorithm proposed in [12].

We further compare to ComplEx [20] and HolE [30], two state-of-the-art
link prediction models for FB15k and WN18. ComplEx facilitates modeling of
asymmetric relations by generalizing DistMult to the complex domain, while
HolE replaces the vector-matrix product with circular correlation. Finally, we
include comparisons with two classic algorithms – CP [31] and TransE [29].

Table 4. Results on FB15k-237, a reduced version of FB15k with problematic inverse
relation pairs removed. CP, TransE, and ComplEx were evaluated using the code pub-
lished for [20], while HolE was evaluated using the code published for [30]. R-GCN+
denotes an ensemble between R-GCN and DistMult.

MRR Hits @

Model Raw Filtered 1 3 10

LinkFeat 0.063 0.079

DistMult 0.100 0.191 0.106 0.207 0.376
R-GCN 0.158 0.248 0.153 0.258 0.414
R-GCN+ 0.156 0.249 0.151 0.264 0.417

CP 0.080 0.182 0.101 0.197 0.357
TransE 0.144 0.233 0.147 0.263 0.398
HolE 0.124 0.222 0.133 0.253 0.391
ComplEx 0.109 0.201 0.112 0.213 0.388

Results. We provide results using two commonly used evaluation metrics: mean
reciprocal rank (MRR) and Hits at n (H@n). Following [29], both metrics can
be computed in a raw and a filtered setting. We report filtered and raw MRR,
and filtered Hits at 1, 3, and 10.

We evaluate hyperparameter choices on the respective validation splits. We
found a normalization constant defined as ci,r = ci =

∑
r |N r

i |, i.e. applied
across relation types, to work best. For FB15k and WN18, we report results
using basis decomposition (Eq. 3) with two basis functions, and a single encoding
layer with 200-dimensional embeddings. For FB15k-237, we found block decom-
position (Eq. 4) to perform best, using two layers with block dimension 5 × 5
and 500-dimensional embeddings. We regularize the encoder via edge dropout
applied before normalization, with dropout rate 0.2 for self-loops and 0.4 for
other edges. We apply l2 regularization to the decoder with a penalty of 0.01.

We use the Adam optimizer [28] with a learning rate of 0.01. For the baseline
and the other factorizations, we found the parameters from [20] – apart from
the dimensionality on FB15k-237 – to work best, though to make the systems
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comparable we maintain the same number of negative samples (i.e. ω = 1). We
use full-batch optimization for both the baselines and our model.

On FB15k, local context in the form of inverse relations is expected to dom-
inate the performance of the factorizations, contrasting with the design of the
R-GCN model. Preliminary experiments revealed that R-GCN still improved
performance on high-degree vertices, where contextual knowledge is abundant.
Since the two models for this dataset appear complementary, we attempt to
combine the strengths of both into a single model R-GCN+: f(s, r, t)R-GCN+ =
αf(s, r, t)R-GCN + (1−α)f(s, r, t)DistMult, with α = 0.4 selected on FB15k devel-
opment data. To facilitate a fair comparison to R-GCN, we use half-size embed-
dings for each component of R-GCN+. On FB15k and WN18 where local and
long-distance information can both provide strong solutions, we expect R-GCN+
to outperform each individual model. On FB15k-237 where local information is
less salient, we do not expect the combination model to outperform a pure R-
GCN model significantly.

In Table 4, we show results for FB15k-237 where (as previously discussed)
inverse relation pairs have been removed and the LinkFeat baseline fails to gen-
eralize5. Here, our R-GCN model outperforms the DistMult baseline by a large
margin of 29.8%, highlighting the importance of a separate encoder model. As
expected from our earlier analysis, R-GCN and R-GCN+ show similar perfor-
mance on this dataset.

The R-GCN model further compares favorably against other factorization
methods, despite relying on a DistMult decoder which shows comparatively weak
performance when used without an encoder. The high variance between different
decoder-only models suggests that performance could be improved by combining
R-GCN with a task-specific decoder selected through validation. As decoder
choice is orthogonal to the development of our encoder model, we leave this as
a promising avenue for future work.

In Table 5, we evaluate the R-GCN model and the combination model on
FB15k and WN18. On the FB15k and WN18 datasets, R-GCN and R-GCN+
both outperform the DistMult baseline, but like all other systems underperform
on these two datasets compared to the LinkFeat algorithm. The strong result
from this baseline highlights the contribution of inverse relation pairs to high-
performance solutions on these datasets.

6 Related Work

6.1 Relational Modeling

Our encoder-decoder approach to link prediction relies on DistMult [11] in the
decoder, a special and simpler case of the RESCAL factorization [32], more

5 Our numbers are not directly comparable to those reported in [12], as they use
pruning both for training and testing (see their Sects. 3.3.1 and 4.2). Since their
pruning schema is not fully specified (values of the relation-specific parameter t are
not given) and the code is not available, it is not possible to replicate their set-up.
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Table 5. Results on the FB15k and WN18 datasets. Results marked (*) taken from
[20]. Results marks (**) taken from [30].

FB15k WN18

MRR Hits @ MRR Hits @

Model Raw Filtered 1 3 10 Raw Filtered 1 3 10

LinkFeat 0.779 0.804 0.938 0.939

DistMult 0.248 0.634 0.522 0.718 0.814 0.526 0.813 0.701 0.921 0.943
R-GCN 0.251 0.651 0.541 0.736 0.825 0.553 0.814 0.686 0.928 0.955
R-GCN+ 0.262 0.696 0.601 0.760 0.842 0.561 0.819 0.697 0.929 0.964

CP* 0.152 0.326 0.219 0.376 0.532 0.075 0.058 0.049 0.080 0.125
TransE* 0.221 0.380 0.231 0.472 0.641 0.335 0.454 0.089 0.823 0.934
HolE** 0.232 0.524 0.402 0.613 0.739 0.616 0.938 0.930 0.945 0.949
ComplEx* 0.242 0.692 0.599 0.759 0.840 0.587 0.941 0.936 0.945 0.947

effective than the original RESCAL in the context of multi-relational knowledge
bases. Numerous alternative factorizations have been proposed and studied in
the context of SRL, including both (bi-)linear and nonlinear ones (e.g., [17,20,
29,30,33,34]). Many of these approaches can be regarded as modifications or
special cases of classic tensor decomposition methods such as CP or Tucker; for
an overview of tensor decomposition literature we refer the reader to [35].

Incorporation of paths between entities in knowledge bases has recently
received considerable attention. We can roughly classify previous work into (1)
methods creating auxiliary triples, which are then added to the learning objective
of a factorization model [36,37]; (2) approaches using paths (or walks) as features
when predicting edges [18]; or (3) doing both at the same time [19,38]. The first
direction is largely orthogonal to ours, as we would also expect improvements
from adding similar terms to our loss (in other words, extending our decoder).
The second research line is more comparable; R-GCNs provide a computationally
cheaper alternative to these path-based models. Direct comparison is somewhat
complicated as path-based methods used different datasets (e.g. sub-sampled
sets of walks from a knowledge base).

6.2 Neural Networks on Graphs

Our R-GCN encoder model is closely related to a number of works in the area of
neural networks on graphs. It is primarily motivated as an adaption of previous
work on GCNs [13,14,39,40] for large-scale and highly multi-relational data,
characteristic of realistic knowledge bases.

Early work in this area includes the graph neural network (GNN) [15].
A number of extensions to the original GNN have been proposed, most notably
[41,42], both of which use gating mechanisms to facilitate optimization.
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R-GCNs can further be seen as a sub-class of message passing neural networks
[16], which encompass a number of previous neural models for graphs, including
GCNs, under a differentiable message passing interpretation.

As mentioned in Sect. 5, we do not in this paper experiment with subsam-
pling of neighborhoods, a choice which limits our training algorithm to full-batch
descent. Recent work including [43–45] have experimented with various sub-
sampling strategies for graph-based neural networks, demonstrating promising
results.

7 Conclusions

We have introduced relational graph convolutional networks (R-GCNs) and
demonstrated their effectiveness in the context of two standard statistical rela-
tion modeling problems: link prediction and entity classification. For the entity
classification problem, we have demonstrated that the R-GCN model can act
as a competitive, end-to-end trainable graph-based encoder. For link prediction,
the R-GCN model with DistMult factorization as decoder outperformed direct
optimization of the factorization model, and achieved competitive results on
standard link prediction benchmarks. Enriching the factorization model with
an R-GCN encoder proved especially valuable for the challenging FB15k-237
dataset, yielding a 29.8% improvement over the decoder-only baseline.

There are several ways in which our work could be extended. For example,
the graph autoencoder model could be considered in combination with other
factorization models, such as ConvE [34], which can be better suited for modeling
asymmetric relations. It is also straightforward to integrate entity features in R-
GCNs, which would be beneficial both for link prediction and entity classification
problems. To address the scalability of our method, it would be worthwhile to
explore subsampling techniques, such as in [43]. Lastly, it would be promising to
replace the current form of summation over neighboring nodes and relation types
with a data-dependent attention mechanism. Beyond modeling knowledge bases,
R-GCNs can be generalized to other applications where relation factorization
models have been shown effective (e.g. relation extraction).
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